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Abstract~We study the effective elastic moduli of two-dimensional (20) composite materials
containing sliding circular inclusions distributed randomly in the matrix. To simulate sliding we
introduce a sliding parameter, which in two limiting cases gives perfect bonding and pure sliding
boundary conditions. We evaluate elastic moduli using four effective medium theories; the self
consistent method, the differential scheme, the Mori-Tanaka method and the generalized self
consistent method. In this paper we focus on two aspects: one is the study of the effect of interface
on the elastic constants of composites and the other is a comparison of the results from effective
medium theories for the cases of both sliding and perfect bonding. In the discussion we use the
recently-stated Cherkaev~Lurie-Milton theorem, which gives general relations between the effective
elastic constants of 20 composites. We also compare the results from the effective medium theories
with those from numerical simulations.

I. INTRODUCTION

In this paper we evaluate the effective elastic moduli of two-dimensional (2D) composite
materials which are reinforced with inclusions dispersed randomly in the matrix. We assume
that the inclusions are circular in shape and we allow sliding at the matrix-inclusion
interfaces.

The exact theoretical evaluation of the effective elastic properties of composites is in
general very difficult, because it requires a precise knowledge of the stress and strain fields
everywhere in the composite. Therefore, many micromechanics-based models have been
introduced to make such a problem mathematically tractable. However, the simplifying
assumptions used in these models may give rise to considerable differences in the predictions
of such methods as shown recently by Christensen (1990) and Christensen et al. (1992),
for example. The methods which are widely used include: the self-consistent method
(Bruggeman, 1935; Budiansky, 1965; Hill, 1965), the differential scheme (Bruggeman,
1935; Roscoe, 1952), the Mori-Tanaka method (Benveniste, 1987; Mori and Wakashima,
1990), the generalized self-consistent method (Mackenzie, 1950; Christensen and Lo, 1979),
and the composite cylinder assemblage model (Hashin and Rosen, 1964). Since in this paper
we are interested in the explicit expressions and the composite cylinder model does not give
a single result for the transverse shear modulus but the bounds, we do not include this
model in the mainstream discussion.

In this paper we predict the elastic properties of composites with sliding interfaces by
using the four above mentioned effective medium theories. We focus on two aspects: the
study of the effect of interface on the elastic constants and the comparison of results from
these methods. We model sliding by using a sliding parameter which relates tangential
tractions to the jump in tangential displacements, while the continuity of normal dis
placements and tractions is maintained. This boundary condition gives perfect bonding and
pure sliding conditions in limiting cases. Our paper is related to recent studies ofChristensen
(1990) and Zimmerman (1991), which were done for the perfect bonding case, and is an
extension of the work of Jasiuk et al. (l992a), who studied the effective elastic constants
of composites with rigid sliding inclusions using the self-consistent method and
the differential scheme. Here, we consider a more general case of elastic inclusions and use
four effective medium theories. In particular, we are interested in several limiting cases
involving holes, rigid inclusions, constituents with equal shear moduli, or equal Poisson's
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ratio, and a material with sliding inclusions but same elastic constants. These limiting cases
exhibit interesting physical behavior, and because of a smaller parameter space enable us
to compare the above methods more easily. The rigid case is of particular interest because
it yields the largest differences between the methods and shows the greatest effect of sliding.

We limit our analysis to the 2D geometry so we can relate our results to a recent
Cherkaev-Lurie-Milton theorem (Cherkaev et at., 1992) or CLM theorem, which holds
only in two dimensions. This theorem is very powerful because it gives the relation between
the elastic constants which is independent of the details of microstructure. The CLM
theorem also gives a general result for stress fields which agrees with the results of Dundurs
(1967, 1970) and Michell (1899), as discussed by Thorpe and Jasiuk (1992). We show that
all effective medium theories studied in this paper do satisfy the CLM theorem for both
perfect bonding and sliding. The original proof of the CLM theorem, given in Cherkaev et
at. (1992), was based on the assumption that all interfaces are perfectly bonded. However,
recently Moran and Gosz (1992) showed that the CLM theorem also holds for the sliding
case. We include a different version of their proof in the Appendix B, for completeness.
This proves an earlier conjecture of Thorpe and Jasiuk (1992) about the validity of the
CLM theorem for more general boundary conditions.

Finally, we compare the results of effective medium theories with those from numerical
simulations (Chen et at., 1993; Day et aI., 1992; Snyder et at., 1992).

2. TWO-DIMENSIONAL ELASTICITY

The stress-strain relations for a linear elastic and isotropic material in three-dimensions
(3D) are

(1)

where Bij and (Jij are the strain and stress tensors, respectively, and E' and v' are Young's
modulus and Poisson's ratio, respectively. Here, we follow the same notation as in Thorpe
and Jasiuk (1992) and we use primes to denote the quantities in 3D, so we can use the
unprimed quantities in 2D.

In 2D or plane elasticity, the constitutive equations can be expressed as

(2)

where E is the 2D (area or planar) Young's modulus and v is the 2D (area) Poisson's ratio.
In 2D, the upper bound on v is 1, as opposed to 1/2 for v' in 3D.

The area bulk modulus K and the shear modulus j1. are defined in terms of 2D constants
as (Sen and Thorpe, 1985; Thorpe and Jasiuk, 1992)

Two other useful relations are

E
K = 2(I-v)'

E
j1.=2(1+v)"

K-j1.
v= K+j1..

(3)

(4)

(5)

(6)
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Ifwe distinguish between the plane stress and plane strain cases, the 20 elastic constants
are related to 3D elastic constants for plane strain as

and for plane stress as

v'
v=-I-"-v

K= K'+ I!
3

(7)

and for both cases

E= E', v = v',
9K'Jl'

K=----
3K' +4Jl'

(8)

where K' and Jl' are the 3D bulk and shear moduli, respectively.
In the remaining part of this paper we use the 20 elastic constants.

(9)

3. PROBLEM STATEMENT

We consider a plane elasticity problem and study the effective elastic moduli of 20
composite materials reinforced with circular inclusions distributed uniformly at random
(i.e. with spatially homogeneous statistics) in the matrix. An example of a 20 composite is
a thin sheet with disks (plane stress) or a transverse plane of a unidirectional composite
(plane strain), for example. Both the inclusions and the matrix are homogeneous, linear
elastic and isotropic. The interfaces between the inclusions and the matrix allow sliding
(slip).

The sliding boundary conditions between the matrix and inclusions involve continuity
of tractions and of normal displacements, and discontinuity in tangential displacements
across the interface. If we employ a polar coordinate system (r, 0) with the origin at the
center of a circular inclusion of radius a, then the sliding boundary conditions at the
inclusion-matrix interface are

u;':(a, 0) = u;,(a, 0), (10)

(ll)

(12)

where the superscripts f and m denote the inclusion (fiber) and the matrix, respectively. The
sliding parameter k is a measure of the degree of sliding at the interface. The pure sliding
condition is reached when k is zero and perfect bonding case when k goes to infinity.
These "spring type" boundary conditions have been used by Lene and Leguillon (1982),
Benveniste (1985), Kouris and Mura (1989), Jasiuk et al. (I 992a), and others.

This interfacial model can be generalized to also include a condition that normal
tractions are proportional to the jumps in normal displacements (Jones and Whittier, 1967;
Aboudi, 1987; Steif and Hoysan, 1987; Achenbach and Zhu, 1989, 1990; Jasiuk and Tong,
1989; Hashin, 1990, 1991, 1992; Zhu and Achenbach, 1991; Thorpe and Jasiuk, 1992).
Then, eqns (10)-(11) are replaced by

u;':(a,O) = u;,(a, 8) = m[u:" (a, 0) -u;(a, 8)]. (13)

However, this condition needs to be used with caution because of possible overlapping of
materials. We choose an earlier model for simplicity, to reduce the parameter space, and
to address the problem of sliding in particular.
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We may add that the interfacial model considered here (10)-(12) is a special case of
boundary conditions (12)-(13) with m ~ 00.

3.1. Dilute result
When the concentration of inclusions is very small (dilute) and there is no interaction

between the inclusions, the effective elastic moduli can be predicted exactly. The dilute
result can be derived by using the solution of an isolated inclusion and the equivalence of
elastic strain energies (Christensen, 1979).

When a remote stress field at is applied to the domain D containing a single sliding
inclusion Q, the elastic strain energy is expressed as (Jasiuk et al., 1992a)

(14)

where WO = ~JD ats?; d V and IQI is the surface of the inclusion. The superscript 0 denotes
quantities due to the applied loads in the absence of inclusion and the subscripts i, j denote
the general coordinates. The quantities aij and Uj imply the total stresses and displacements
which include at, u? and the disturbance due to the presence of inclusions. nj represents a
unit vector which is normal to the inclusion-matrix interface and [u;] = u)" - uJ is the jump
in displacements at the interface.

The elastic strain energy stored in the equivalent homogeneous medium is

(15)

where Sijkl is the effective compliance.
Using the boundary conditions (10)-(12) and equating the elastic strain energies in

eqns (14) and (IS), the effective area bulk modulus K and the effective shear modulus /l
have been found to be (Thorpe and Jasiuk, 1992),

(16)

(17)

where k = (ka)/2 and c is the volume (area) fraction of inclusions. From these solutions
we can obtain two limiting cases, perfect bonding (k~ 00) and pure sliding (k~ 0).

3.2. Self~consistent method
The self-consistent method (Bruggeman, 1935; Budiansky, 1965; Hill, 1965) assumes

that a typical inclusion is embedded in a homogeneous material having the effective elastic
constants K and /l.

In order to calculate the effective shear modulus, we apply a remote external shear
stress a~Y' Then, the volume (area) averages of the total strain Sxy and stress axy are given
as
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(18)

(19)

where the subscripts x, y denote rectangular coordinates. The last integral in (18) accounts
for sliding and can be calculated by using the sliding boundary conditions (12). After
evaluating the integrals in eqns (18)-(19), the average strain and stress can be written as

where gC is defined as

gC

r
I I 2 ]-+-+-J-l J-lf K f

r
(~)G+~) ]

2231 1121 12(-+-+-+-)+f(-+-+-)(-+-+-)J-l l K K f J-l J-lf K J-l J-lf K f

(22)

and 11m
, em are the average shear stress and strain in the original matrix with the shear

modulus J-lm. By using 11m = 2J-lmem and eliminating 11m from eqns (20)-(22) the effective
shear modulus J-l is found to be

The area bulk modulus can be obtained in a similar way if the external loads
l1~x = I1Jy are applied. The result is

(24)

Expressions for the effective shear and bulk modulus are highly coupled and are solved
numerically. In the brief presentation here we followed Mura (1987) but we modified the
expressions to account for sliding. Related results from the self-consistent method in 2D
are reported in Ostoja-Starzewski et al. (1993).
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The self-consistent method was used earlier for the sliding case by Ghahremani (1980)
to predict the elastic moduli of polycrystals with spherical grains having freely sliding
boundaries and by Jasiuk et al. (1 992a) who studied a composite with rigid sliding inclusions.

3.3. Differential scheme
The differential scheme was developed by Bruggeman (1935) and Roscoe (1952) and

employed by McLaughlin (1977), Norris (1985), Zimmerman (1991), and others.
Let us consider an effective homogeneous medi\lm whose moduli are given by dilute

results (16)-(17). The differential scheme suggests a sequential procedure such that a small
amount of area fraction of inclusions oc is added to the effective medium at each step. As
the area fraction of inclusions increases, the effective moduli change by the increments of
oK and 0/1. The differential equations are set up from the dilute results by taking the limit
Dc --t 0 leading to

dK =~ (1- K) [i +l ]
K l-c K f 1 1 '

-+-
K f /1

(25)

Equations (25) and (26) are two highly coupled nonlinear differential equations. The
solution can be obtained by using the conditions /1 = /1m and K = K m at c = 0, as illustrated
by Jasiuk et al. (1992a), for example.

3.4. Mori-Tanaka method
This average field method was introduced by Mari and Tanaka (1973) and has been

used by a number of researchers to predict the effective properties. There are two formu
lations of the Mori-Tanaka method for the perfect bonding case, which have different
derivations but yield identical results. One is due to Benveniste (1987) and involves the
"strain" or "stress concentration factor" concept. The second approach involves an equi
valent inclusion method (Eshelby, 1957), and was recently reformulated by Mori and
Wakashima (1990) and referred to as a successive iteration method. Both formulations can
be extended to the sliding case. In this paper we follow the approach ofMori and Wakashima
(1990), which was generalized by Shibata et at. (1990) to solve the case of a material with
freely sliding inclusions having same elastic constants as the matrix.

If a traction t; = (T~nj is applied at infinity, where (T~ is constant, the average stress
field in a single inclusion Q is given as

(27)

where s~" is the fictitious eigenstrain in the isolated inclusion, (j;j, Bij are stress and strain
disturbances in an isolated inclusion, and < > implies the volume (area) average. This is
the equivalent inclusion method (Eshelby, 1957; Mura, 1987) which is usually applied to
the perfect bonding case, but is also valid for the sliding case when the volume averages are
used. The equivalent eigenstrain in the sliding inclusion can be calculated by equating the
elastic strain energies of the inclusion, with the eigenstrain st", having the same elastic
constants as the matrix and of the inclusion with different elastic constants and subjected
to a remote load (T~
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This can be rewritten as

(29)

where <e~')n is the average equivalent eigenstrain in the isolated inclusion.
The effective shear modulus is obtained when a remote shear stress C1~y is applied to

the medium. Then, by definition,

(30)

where <e:y)n is the average equivalent eigenstrain in the inclusion which includes the
interaction with other inclusions and can be evaluated from the isolated inclusion solution
as

<*) f3 0
exy n = I +eex C1xy ,

where ex and f3 are defined as

where

(31)

(32)

(33)

ex=
A
2 '

with

A ( 1 I )f3 = 2. Jim + K m , (34)

(35)

Combining eqns (31)-(35), the effective shear modulus Ji is

1 1 2eA (1 1 )
~= Jim + (l-eA) Jim + K m . (36)

The effective area bulk modulus can be obtained in a similar way by applying the
remote stress C1~x = C1~y :

SAS 3O:18-F



2508 s. JUN and I. JASIUK

(37)

Note that the expression for bulk modulus does not involve a sliding parameter k and is
the same as for the perfect bonding case.

In contrast to the first two methods, the expressions for the elastic constants from the
Mori-Tanaka method can be easily calculated by substituting directly the elastic constants
of the matrix and inclusions into the final closed forms.

3.5. Generalized self-consistent method
The generalized self-consistent method (Mackenzie, 1950; Christensen and Lo, 1979),

also called a three phase model, modifies the self-consistent model by placing the matrix
phase between the inclusion and the effective medium. If we denote the radius of the
inclusion by a and the radius of the concentric matrix core by b, we have a boundary
value problem involving sliding boundary conditions (10)-(12) at r = a, perfect bonding
conditions with continuity of tractions and displacements at r = b, and tractions t j = (f~nj

applied at infinity.
The effective elastic moduli are obtained by equating the elastic strain energy stored

in the heterogeneous medium with the elastic strain energy in the equivalent homogeneous
medium (Christensen and Lo, 1979; Christensen, 1979)

(38)

where the integral is taken over the surface r = b. When we evaluate the effective shear
modulus, the boundary conditions involve (f", (frO, Un Uo and we have eight unknown
constants. One of these constants vanishes as a result of eqn (38). This leads to a quadratic
uncoupled equation for Jl

(39)

The coefficients C I> C2, C3 are given in Appendix A. These coefficients contain the sliding
parameter k. It can be easily shown that, if k is taken to be infinite (perfect bonding), the
solution of eqn (39) coincides with that of Christensen and Lo (197.9).

The effective area bulk modulus is computed when applied loads are (f~x = (f~y" The
result is

(40).

which is exactly the same as the result of the Mori-Tanaka method, given in eqn (35). This
also coincides with the result from the composite cylinder assemblage model.

The generalized self-consistent method was used earlier by Benveniste (1985) and
Rashin (1990) to evaluate elastic constants of composites with spring-type interfaces.
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4. THE CLM THEOREM

The Cherkaev-Lurie-Milton theorem (Cherkaev et aI., 1992), which we refer to as the
CLM theorem, is a new result in 2D elasticity, that has very important applications in the
mechanics of composite materials. It applies to linear elastic 2D materials with general
anisotropy and arbitrary phase geometry.

For a two phase material, which is effectively isotropic and has homogeneous and
isotropic components, it can be stated as follows. If the area bulk modulus K and the shear
modulus /l of the components are transformed as

I I-=--c
/lm /lm '

(41)

then

(42)

(43)

where the subscript t denotes the transformed moduli and C is a constant. Note that there
is a restriction placed on C to ensure positive bulk and shear moduli K and fl. An important
point is that under the transformation (41)-(42) the local stresses in an original and
transformed material are the same under the same external tractions.

If we express the CLM theorem in terms of the area Young's modulus, we have

(44)

which implies the invariance of E under the transformation.
One can show that all four effective medium theories studied in this paper do satisfy

the CLM theorem for both perfect bonding and sliding. The original proof of the CLM
theorem (Cherkaev et al. 1992) was based on the assumption of perfect bonding at the
interfaces, but Moran and Gosz (1992) showed that the CLM transformation and theorem
also holds for the constrained spring layer model in which sliding inclusion is a limit case.
Following the main idea of their proof we include an alternate version of their proof in the
Appendix B. The rigorous proof that the CLM transformation holds for pure sliding is
given by Dundurs and Markenscoff (1993). These latest results prove an earlier conjecture
by Thorpe and Jasiuk (1992) that the CLM theorem also holds for the more general
boundary conditions such as sliding.

We discuss the consequences of the CLM theorem in the next section.

5. SPECIAL LIMIT CASES

Several limit cases are studied in this section to compare results of the effective medium
theories and to observe the effects of sliding on the elastic properties of 2D composite
materials.

5.1. Materials with holes
When the inclusions are holes, the effective moduli are easily obtained from the results

of Section 3 by taking the limits K f -+ 0 and /If -+ O. The results are independent of the value
of interface parameter k, as expected.

We are particularly interested in the effective area Young's modulus and the area
Poisson's ratio. These can be obtained from K and /l via eqns (5) and (6) as follows:
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(45)

(2) Self-consistent method

Note that eqns (46) and (45) are the same!

(3) Differential scheme

(4) Mori-Tanaka method

(46)

(47)

l-c

1+2c'

(5) Generalized self-consistent method

c+Vm(1-c)
V=---'---'-

1+2c
(48)

E c(1-2c-c2)+J(1 +c+c2+c 3)2-12c2

Em (1 +5c+2c2
)

[

m (1+C)] E
V= V -(1-c) Em+1. (49)

The expression for E for the generalized self-consistent method was taken from Christensen
(1993).

A very interesting result has been recently obtained numerically by Day et ai. (1992),
namely that the effective area Young's modulus of a 2D material containing circular holes
is independent ofthe Poisson's ratio of the host material. This observation is closely related
to Michell's (1899) result, which states that the stress field in a material containing holes
and subjected to tractions is independent of the elastic constants of the material, if the
resultant of forces over every hole vanishes. This result can be easily proved by the CLM
theorem (Cherkaev et ai., 1992; Day et ai., 1992). The CLM transformation leaves holes
as holes and the change in Poisson's ratio of the matrix does not change E as seen from
eqn (44). Since the CLM theorem holds for an arbitrary geometry, this result is true for
holes of any shape. The application of the CLM theorem to the problem of a material with
polygonal holes, including cracks, has been recently explored by Jasiuk et ai. (1992b).

All the effective medium theories discussed in this paper predict that E is independent
of vas seen in eqns (45)-(49). We illustrate it in Fig. 1. Note that the predictions for E are
different due to the different micromechanics models used but they all show the invariance
of E on the Poisson's ratio of the matrix. The results from the numerical simulations show
that the effect of geometric arrangement is significant as illustrated in Fig. 10 of Day et al.
(1992) where E is given for regular honeycomb, regular triangular, and random overlapping
inclusion geometries. We may add that the results for random nonoverlapping inclusions
lie close to the random overlapping case (Thorpe, 1991). Comparing the results of Day for
a random case with our Fig. 1 we see that the self-consistent method gives a closer prediction
for E for small area fraction of holes than the other three methods. We should add that the
simulations of Day are for single size holes while the effective medium theories may assume
a gradation of sizes. However, since the theories discussed here are often used to predict
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Fig. 1. Effective area Young's modulus E/Em vs area fraction c of a material containing circular
holes as predicted by four effective medium theories: self-consistent (sq, differential scheme (DS),
Mori~Tanaka (M~T) and generalized self-consistent (GSC) methods. Note that the results are

independent of Poisson's ratio of the matrix.
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the effective elastic constants of composites with fibers of nearly equal diameters, this
comparison is of interest.

Another interesting quantity is the effective 2D Poisson's ratio. A number of papers
reported a tendency of Poisson's ratio to go to a fixed point as percolation is approached
(i.e. E -+ 0), and this result was recently proved by using the CLM theorem (Day et al.,
1992). When the material contains holes we can rewrite the CLM theorem in terms of E
and vas follows

(50)

Then if E -+ 0, then the right-hand side vanishes and VI = v, which shows that the effective
area Poisson's ratio flows to a fixed point which is independent of the Poisson's ratio of the
matrix. This point depends on the geometry (shape, relative size, and arrangement) ofholes.
We denote this point by vo.

Figure 2 illustrates the flow ofarea Poisson's ratio to the fixed point as the area fraction
increases. The effective medium theories predict different values of vo. The differential
scheme, the self-consistent method, and the Mori-Tanaka method predict that the effective
Poisson's ratio V goes to 1/3 as percolation point is approached (Fig. 2a), while the
generalized self-consistent method Vo = 1 (Fig. 2b). We define the volume (area) fraction
at percolation by Co. The percolation concentration for all the above methods is Co = 1
except for the self-consistent method which predicts Co = l These can be easily obtained
from eqns (46)-(49). Co is obtained by setting the expressions for (EIEm

) to zero, while Vo
is evaluated by substituting Co into the expressions for v. The results from the self-consistent
method are shown in Fig. 3 of Thorpe and Jasiuk (1992).

Day et al. (1992) also looked at the flow of Poisson's ratio and found that the Poisson's
ratio goes to the fixed point for all the geometric arrangements studied, and Vo = ! for the
triangular and random arrangements, and Vo = 1for the honeycomb network, as illustrated
in Fig. 12 of Day et al. (1992). Therefore, the three effective medium theories predict the
same Vo as the numerical simulations for the random case. The predictions for the area
fraction at percolation Co differ as expected since the numerical simulations of Day et al.
(1992) take inclusions of single size. However, the result for Co from the self-consistent
method is much too low (Budiansky, 1965).

The existence of the fixed point (vo = 0.2) for Poisson's ratio for a 3D material with
spherical holes was reported by Zimmerman (1991) for the differential scheme.

The effective elastic moduli of plates with holes near percolation were also discussed
by Krajcinovic et al. (1992).
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Fig. 2. Effective area Poisson's ratio v vs c as predicted by (a) the Mori~Tanaka method and (b)
the generalized self-consistent method.

5.2. Materials with rigid inclusions
In this section we consider materials with rigid inclusions. The results are computed

by taking K f -+ 00 and J1.f -+ 00 from the expressions in Section 3 for the elastic inclusions.
Here we supplement Jasiuk et af. (1992a) paper in which the results from the self-consistent
method and the differential scheme were discussed. The final forms ofthe four theories are:

(I) Self-consistent method

(51)

(52)
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(2) Differential scheme

Jlm _ (l-Vm ) _ 3)(I+k)/(3+2k)

Jl - (l-v) (l c) ,

K m _ (l +vm)(l-v) (! _vm) _ 3jl+£l/(3+2/i)

K -(l+v)(l-vm) (l-v)(l c)

(3) Mori-Tanaka method

where

(4) Generalized self-consistent method

2513

(53)

(54)

(55)

(56)

(57)

I

K
(58)

(59)

where the coefficients C b C2 and C 3 can be obtained from Appendix A.
The four effective medium theories predict very different results for the Poisson's ratio.

In the perfect bonding limit, the self-consistent method and the differential scheme give the
fixed value of Poisson's ratio, which is Vo = 1, as shown in Figs 2 and 3 in Jasiuk et al.
(l992a). However, the Mori-Tanaka method and the generalized self-consistent method
do not give the fixed value of Poisson's ratio as shown in Figs 3(a) and 4(a), but a tendency
is there for the generalized self-consistent method. We should point out that it is not known
whether there is a fixed point for the Poisson's ratio of the composite with rigid inclusions.
Note that we cannot use the eLM theorem for this limiting case because it yields a trivial
result.

As the interface parameter k decreases, i.e. sliding increases, the effective Poisson's
ratio increases as predicted by all four methods. This observation was also made by Jasiuk
et af. {1992a). For the limit case of pure sliding all theories show the fixed point ofPoisson's
ratio; this value is Vo = I for all except the generalized self-consistent method which gives
Vo = ~. The results for v as predicted by the Mori-Tanaka theory and the three phase model
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Fig. 3. Effective area Poisson's ratio v vs c of a composite with rigid inclusions for (a) perfect
bonding, and (b) sliding, given by the Mori-Tanaka method.

are shown in Figs 3-4. Unlike in the perfect bonding case, all theories, including the self
consistent method, show the percolation point at Co = 1. It is interesting to note that for
the perfect bonding case the self-consistent method predicts percolation at Co = 3, which
agrees with the result for single size overlapping inclusions (Jasiuk et aI., 1992a).

When sliding takes place at the matrix-inclusion interface, the effective shear modulus
and the effective area Young's modulus are lower than those of the perfect bonding case.
All theories agree on this reduction of J1. and E. However, the theories disagree on the area
bulk modulus result. The self-consistent method and the differential scheme show a
reduction of K while the Mori-Tanaka method and the generalized self-consistent method
yield the same value of K as for the perfect bonding case. Another difference is found in
the effective shear modulus. The Mori-Tanaka method predicts that J1. is finite (J1. = 3J1.m)
at c = 1, while the other three methods give an infinite value of J1. at c = 1.

When we compare the predictions from the effective medium theories with those from
the numerical simulations (Thorpe, 1991) we find that for a material with perfectly bonded
rigid inclusions the generalized self-consistent model agrees most closely with the numerical
results for the shear modulus of a material with for nonoverlapping single-size inclusions,
while the differential scheme is in closest agreement with the numerical results for the
area bulk modulus of a material with the same geometry. The flow of Poisson's ratio is
approximated well by the three phase model.

5.3. Materials with equal shear moduli
If the shear moduli of the matrix and the inclusions are the same, the upper and lower

bounds coincide and the effective elastic constants are determined exactly (Hill, 1964;
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Fig. 4. Effective area Poisson's ratio v vs c ofa material with rigid inclusions for (a) perfect bonding,
and (b) sliding, as predicted by the generalized self-consistent method.

Hashin, 1965). This is true in both 2D and 3D, but only for the perfect bonding case. All
the effective medium theories used here give the exact values for elastic constants. The shear
modulus is J.l = J.lrn = J.lf while the area bulk modulus is

(60)

It is interesting to note that these results, when expressed in terms of E and v, obey the
mixture law (Thorpe and Jasiuk, 1992)

E = cE f +(I-c)E rn
, (61)

(62)

These exact results can be proved for 2D by the CLM theorem as shown in Cherkaev et at.
(1992) and Thorpe and Jasiuk (1992). All four effective medium theories reduce to (60)--(62)
in this limiting case.

5.4. Materials with equal Poisson's ratios
Ifthe Poisson's ratios of the matrix and the inclusions are the same, then the effective

Poisson's ratio v is in general different to that of the components. This problem was also
investigated by Snyder et at. (1992) who reported the results from the self-consistent method
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and the numerical simulations. It is interesting to note that for the perfect bonding case
with Em #- E f both the numerical simulations and the predictions of three effective medium
theories give a result that if ym = yf > 1, then y is less than ym and vt', if ym = yf = 1. then
y =1and if ym = yf < t then y is greater than ym = yf, as illustrated in Fig. 6(a) for the
Mori-Tanaka method. The generalized self-consistent method deviates a little from this
rule [Fig. 6(b)]. When the mismatch in E is large this effect is more pronounced, while for
a homogeneous material it disappears.

5.5. Materials with sliding inclusions having same elastic constants as the matrix
It is known that the stress field is independent of the elastic constants when the matrix

and sliding inclusions are made ofthe same material and the loading is in terms of prescribed
tractions (Dundurs and Stippes, 1970). Recently, Thorpe and Jasiuk (1992) showed that
the area Young's modulus B of such a material is independent of the Poisson's ratio for the
dilute concentration of inclusions. Here, we find that the four effective medium theories
studied in this paper also predict this result as shown below:

(1) Dilute result

E c
-= I--Em 2' (63)
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(2) Self-consistent method

(3) Differential scheme

(4) Mori-Tanaka method

(64)

(65)

4-c (4-C)v=l-(l-vm
) 4+c' (66)

(5) Generalized self-consistent method

c[3(l-2c)2 -I]+2J4- 3(l-2c)2C2

c[3(1-2c)2+ 1]+4
(67)

We illustrate the results for E as predicted by the four methods in Fig. 7. The invariance
of E on v can be proved by the eLM theorem in the same way as the proof for material
with holes was done. We may add that eqn (50) holds for this case also. The effective area
Poisson's ratios predicted by the effective medium theories do not go to a fixed point, except
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Fig. 7. Effective area Young's modulus E/Ern vs c for a material with sliding inclusions and Ern = E'
and vrn = vf as predicted by the effective medium theories. Note that the result is independent of

Poisson's ratio of the host material.

for the differential scheme result, which gives Vo = I. Here, we do not expect a fixed point
unless E goes to zero [see eqn (50)]. The effective shear modulus decreases considerably
due to sliding, but this reduction is most pronounced in the differential scheme result which
predicts that p. --. 0 at c = 1. The interpretation of this result is difficult but one can imagine
that at c = 1 the matrix disappears and is replaced by a network of vanishingly thin sliding
interfaces which do not resist shear.

The effective elastic moduli of a material with sliding inclusions of the same material
as the matrix in 2D and 3D were evaluated earlier by Shibata et al. (1990) by using the
Mori-Tanaka method.

5.6. Material with elastic inclusions
Finally, we consider a general case of elastic inclusions and we focus on a physical

problem of a glass/epoxy composite with Kf/Km= 11 and l/p.m = 22. We choose this
system because we have available the numerical results of Chen et al. (1993), and second
order bounds (Hill, 1964; Hashin, 1965), and third order bounds (Torquato and Lado,
1988) for the perfect bonding case. We illustrate the predictions from the effective medium
theories for K and p. for both perfect bonding (Fig. 8) and pure sliding (Fig. 9). Note a
significant difference in the predictions for p. for perfect bonding and sliding cases. The
results of numerical simulations for perfect bonding case, given in Fig. 4 of Chen et al.
(1993), lie between the predictions of the self-consistent method and the differential scheme.
It may also be pointed out that the predictions of the Mori-Tanaka method lie outside
Torquato's third order bounds.

6. CONCLUSIONS

The effective moduli of two dimensional composites with sliding interfaces are cal
culated using four effective medium theories: the self consistent method, the differential
scheme, the Mori-Tanaka method, and the generalized self-consistent method. We also
discuss the results for composites with perfectly bonded inclusions and for materials with
holes, for completeness.

We show that the effect of sliding is significant but we point out that the actual
predictions may vary considerably depending on the method used.

All four methods predict a reduction in the effective area Young's modulus and shear
modulus due to sliding. However, only the self-consistent method and the differential
scheme give the reduction in the effective area bulk modulus. All methods show an increase
in the Poisson's ratio due to sliding.

All theories give a result that the 2D Young's modulus of a material with holes is
independent of the Poisson's ratio of the host material. The same conclusion holds for a
material with sliding inclusions having the same elastic constants as the matrix. These agree
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with the results from the CLM theorem. However, the actual values given by each effective
medium theory differ as they employ different geometric models.

When the shear moduli of the components are equal the exact result is known. All
theories reduce to this result.

Also, we compare the results from the effective medium theories with those from the
numerical simulations for composites with randomly distributed nonoverlapping single-size
circular inclusions with perfectly bonded interfaces. We find that no one method gives close
predictions for whole parameter space, but they yield close approximations for a given
range of parameters.

In our discussions we considered the whole range of inclusion area fractions, including
c = 1. This is justified as the effective medium theories may allow gradation of sizes. Also,
this limit is of interest, as the predictions of the methods differ most in this limit.

Finally, all four theories do obey the CLM theorem for both the perfect bonding and
sliding cases.
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APPENDIX A

The coefficients of the quadratic equation for the shear modulus given by the generalized self-consistent
method [eqn (39)] are

C, = c,e, -b,f" (AI)

Cz = c,ez +czel-(bdz +bd,), (A2)

c, = czez -bzfz, (A3)

where

b, = X, +xz, (A4)

bz = -x, +'7mxz, (A5)

c, = -x,+2XZ-X4' (A6)
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x. = 2[(/lf+I)/lm+(/lm+I)//lc,

x 5 = {6/lm/l f_k[(/lffi + 3)/lf _ (/If + 3)/lffi]}C3 ,

x. = [/lffi/lf -k(/lf - /lffi)lc 2,

X7 = 3/lffi /l f+k(/lf +/If/lffi),

(A7)

(A8)

(A9)

(AIO)

(All)

(AI2)

(Al3)

(AI4)

(AI5)

(AI6)

(AI7)

(AI8)

(AI9)

where c is the volume fraction of inclusions and /If.ffi = I +2(/lf.ffi)/(Kf.ffi).

APPENDIX B

Consider a two-phase composite, with sliding boundary conditions at interfaces (10)-(12), subjected to
uniform surface tractions

(BI)

where ut is a constant tensor. Then, the volume average of stress, <uij), is

(B2)

and the effective compliance of the composite S'jkl is defined by

(B3)

where <6ij) is the volume average strain, which for the two phase composite with sliding interfaces is defined by

where

J'j = -2
1 r ([u;]nj+ [uJn,) dSJOI

(B4)

(B5)

and D-n is the matrix domain, n denotes the inclusions' regions and \nl implies the surfaces of inclusions. The
stresses and strains in the individual phases are related by the Hooke's law as

(B6)

(B7)

Substituting eqns (B6)-(B7) into (B4) and (B3) we have

(B8)

Next, consider a transformed system, denoted by the subscript t, such that the stress remains invariant
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(J~(X)(J!j(X) = (Jij(x), The compliances of such a system are

where
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(B9)

(BlO)

(BII)

as given by Cherkaev et al. (1992). We refer to this step as the CLM transformation. The proof that the CLM
transformation also holds for the composites with sliding interfaces is given by Moran and Gosz (1992) and
Dundurs and Markenscoff (1993). For the transformed system eqn (B8) becomes

(BI2)

Subtracting eqn (B8) from (BI2) we have

(BI3)

which can be contracted to

(BI4)

by using eqns (B9)-(BlO). Note that the quantity Jt -Jij = O. Since the stress fields are the same for both systems
and the spring constant k remains unchanged, then the jumps in displacements also remain unchanged due to eqn
(12) (Moran and Gosz, 1992). Finally using eqn (BI4) and the definition of the average stress (B2) we have

(BI5)
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